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Nonequilibrium transitions for a stochastic globally coupled model
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We report on two globally coupled models driven by noises, and study their nonequilibrium transitions. It is
shown that these models both have the symmetry-breaking transition reported by Broeck and co-workers
@Phys. Rev. Lett.73, 3395 ~1994!; Phys. Rev. E49, 541 ~1994!#, and a non-symmetry-breaking transition
under some circumstances. The former is a second-order phase transition, and the latter is not a phase transi-
tion. @S1063-651X~98!02109-6#

PACS number~s!: 05.40.1j, 47.20.Ky, 47.20.Hw
flu
on

ou
h
e
cil

ite
at
in
th

h
th

ci

n

rk
-

or
n

-

at

ce
lu-
le

e

c-

es,

that
ase
n-

and
I. INTRODUCTION

Lately there has been an increasing interest in the in
ence of noises on nonequilibrium transitions and bifurcati
for a system with finite or infinite oscillators@1–12#. Usu-
ally, two types of coupling are considered. One is local c
pling, when each oscillator is influenced only by its neig
bors @1–8#. The other is global coupling, when th
interaction does not depend on the distance between os
tors @9–15#.

In this paper we shall consider two models with infin
globally coupled oscillators driven by noises, and investig
the nonequilibrium transitions for them. In order to expla
clearly the transitions for our models, let us first consider
transitions in Refs.@1–12#. In Refs.@1–5,7–12#, the transi-
tions are second order, while in Ref.@6# the transition is first
order. However, these transitions are accompanied wit
breaking of symmetry, and are between the state with
mean fields50 and the state with the mean fieldsÞ0. For
convenience, we call the phase transitions in Refs.@1–10,12#
symmetry-breaking mean-field~SBMF! transitions.

II. ADDITIVE NOISE MODEL

We consider a model whose Langevin equations of os
lators are~in dimensionless form!

ẋi52xi
31esxi

21bxi1j i~ t ! ~ i 51,2,3, . . . !, ~1!

where$j i(t)% are Gaussian white noises with zero mean a
correlation function^j i(t)j j (t8)&52Dd i j d(t2t8), e is a
positive coupling constant, and the mean fields
5 limN→`(1/N)( i

Nxi , which has appeared in previous wo
@16,17#. Because ofN→`, all the oscillators have an iden
tical evolution given by the nonlinear stochastic equation

ẋ52x31esx21bx1j~ t !, ~2!

wheres(t)5^x(t)&, which represents the time-dependent
der parameter. The corresponding nonlinear Fokker-Pla
equation~NLFPE! is @18,19#

] tP~x,t !5]xU08~x,s!P~x,t !1D]x
2P~x,t !, ~3!
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in which the prime indicates a derivative with respect tox of
the potentialU0(x,s)5x4/42esx3/32bx2/2, ands satisfies
s5*2`

` xP(x,t)dx. The functional form of the stationary so
lution of the NLFPE is obtained as

Pst~x,sst!5Z21expF2
U0~x,sst!

D G , ~4!

where Z is the normalization constant. The potential th
shows up in Eq.~4! depends onsst, which has to comply
with the condition

sst5E
2`

`

xPst~x,sst!dx5F~sst!. ~5!

The solution of this implicit equation yields the dependen
of sst with the system parameters. Obviously the trivial so
tion sst50 always exists. With the appearance of multip
solutions, we can findsstÞ0. Below, we shall investigate th
transitions for model~1! according to Eqs.~4! and ~5!.

A. Case ofb>0

It can easily be verified that the functionF(sst)
5*2`

` xPst(x,sst)dx is a smooth, monotonic, and odd fun
tion. When (]/]sst)F(sst)<1, the functionF5F(sst) crosses
the functionF5sst at sst50 ~stable!; when (]/]sst)F(sst)
.1, the functionF5F(sst) crosses the functionF5sst at
sst50 ~unstable! andsst56sst

0 ~stable,sst
0.0). Thus the con-

dition that the system transits from the statesst50 to the
state sstÞ0, or vice versa, is (]/]sst)F(sst)usst5051, i.e.,

F8(sst50)51. Now the system has two stationary stat
which are respectively the symmetric bistable state (sst50)
and the asymmetric bistable state (sstÞ0). It is clear that the
transition happening here is the SBMF one.

The phase transition line determined byF8(sst50)51 is
plotted in Fig. 1~a!. Here we setb51. The region below the
curve corresponds to the asymmetric bistable state, and
above the curve to the symmetric bistable state. At the ph
transition line there is a bifurcation of the probability de
sity. The nonzero value ofsst is represented in Fig. 1~b! from
Eq. ~5! ~the order parameter of the phase transition ism
5usstu). The figure shows that~a! the transition is second
order, since the order parameter changes continuously;
2838 © 1998 The American Physical Society
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~2! the part ofsst.0 and that ofsst,0 are basically sym-
metric with respect to theD-coordinate axis. The poin
s50 at the curve which cannot be calculated from Eq.~5!
has been marked by a little circle.

B. Case ofb<0

In this case the system has three stationary states fo
potential. The first is the symmetric monostable statesst
50), the second is the asymmetric monostable statesst
Þ0), and the third is the asymmetric bistable state (sstÞ0).
When sstÞ0, there is a critical condition separating th
asymmetric monostable state and the asymmetric bist
state. It is sst5sst

(0)56(2A2b)/e562/e56s0 ~see the
Appendix; here we setb521 and s052/e). For conve-
nience, we only consider the case ofsst.0 below.

It can be verified that for a given value ofe, when the
system is in the symmetric monostable state, the functioF
5F(sst) crosses the functionF5sst only at sst50 ~stable!;
and when the system is in the asymmetric monostable s
the functionF5F(sst) crosses the functionF5sst at sst50
~unstable! and sst5m0 (0,m0,s0, stable!; and when the
system is in the asymmetric bistable state the functionF
5F(sst) crosses the functionF5sst at sst50 ~unstable!, sst
5s0 (s052/e, unstable!, andsst5m1 (s0,m1,`, stable!.

FIG. 1. The SBMF transition line in thee vs D plane, and the
stationary mean-field value as a function ofD in the case ofb51
for model ~1!. ~a! is the phase transition diagram, and~b! is the
stationary mean-field diagram.
he

le

te

It is clear that there are nonequilibrium transitions betwe
the symmetric monostable state and the asymme
monostable state, and between the asymmetric monos
state and the asymmetric bistable state. The former is
SBMF transition~second order!. The latter is a transition
without breaking of symmetry. For convenience, we call t
latter transition the non-symmetry-breaking mean-field tr
sition ~NSBMF transition!. The NSBMF transition here is
not a phase transition, and does not possess features si
to those observed at the equilibrium phase transitions. Us
a similar method as in the case ofb.0, we can easily verify
that the conditions for the SBMF and NSBMF transitions
appear are (]/]sst)F(sst)usst5051 and (]/]sst)F(sst)usst5s0

51, respectively. If there is a transition between the sy
metric monostable state and the asymmetric bistable sta
is first order~since the order parameter changes disconti

FIG. 2. The SBMF transition line~dashed! and the NSBMF
transition line~solid! in the e vs D plane in the case ofb521 for
model ~1!.

FIG. 3. The positive stationary mean fieldm ~dashed line! as a
function of e for model ~1!. b521 andD55. The solid line is
determined bym52/e.
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ously!. However, by the following study we can find that th
first-order transition does not exist.

The SBMF and NSBMF transition lines are plotted in F
2. The dashed line is the SBMF and the solid line is
NSBMF. In Fig. 2, region I corresponds to the symmet
monostable state, region II to the asymmetric monosta
state, and region III to the asymmetric bistable state. Fr
Fig. 2 we can find that there is not a transition between
symmetric monostable state and the asymmetric bist
state unless the noise strength tends to infinity. From Eq.~5!
we plot the positive mean fieldm5usstu ~dashed line; it is the
order parameter! as a function of the coupling constante for
D55 in Fig. 3. In order to obtain the value of the ord
parameter when the NSBMF transition occurs, in Fig. 3
plot the solid line determined byeusstu5em52, which is the
critical condition separating the asymmetric monostable s
and the asymmetric bistable state~see the Appendix!. From
the figure we can find that the solid line crosses the das
line at m80.66. Thus the value of the order parameter
fe
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m80.66 when the NSBMF transition occurs. Now th
NSBMF transition is between the state~the asymmetric
monostable state! with 0,m<0.66 and the state~the asym-
metric bistable state! with m.0.66.

III. MULTIPLICATIVE NOISE MODEL

We now consider the case when multiplicative noises
ist. Now the stochastic differential equations of oscillato
are ~in dimensionless form!

ẋi52xi
31esxi

21bxi1xih i~ t !1j i~ t ! ~ i 51,2,3, . . . !,
~6!

where $h i(t)% are Gaussian white noises with zero mea
and the correlation functionŝ h i(t)h j (t8)&52D8d i j d(t
2t8) and ^h i(t)j j (t)&50. $j i(t)% are the same as those
Eq. ~1!. The stationary solution of the NLFPE for Eq.~6! is
@18,19#
Pst~x,sst!5Z821expH 2Fx2/22esstx2
b2D81D/D8

2
ln~x21D/D8!1esstAD/D8tan21~xAD8/D !G Y D8J , ~7!
hich

e
re

by
where we drop the subscripti for simplicity since whenN
→` all the oscillators have an identical evolution, andZ8 is
the normalization constant. In this case we define an ef
tive potentialUFP(x,sst), which is written as

UFP~x,sst!52D8lnPst~x,sst!. ~8!

The effective potentialUFP(x,sst) for Eq. ~6! is different
from the potentialU0(x,sst) in the additive noise case. Bu
the equations for their extrema are basically the same.
equation of extrema for Eq.~8! is

x32esstx
22~b2D8!x50 ~9!

@the equation of extrema forU0(x,sst) is x32esstx
22bx

50].
Obviously the trivial solutionsst50 always exists@for

sst50, Pst(x,sst) is symmetric#. With the appearance of mul
tiple solutions, we can findsstÞ0 @the symmetry of
Pst(x,sst) is broken#. In the following we first consider the
case whenb.0.

From Eq.~8! and its critical condition, one can find that
D8,b, whensst50 the system is in the symmetric bistab
state for the potential, while whensstÞ0 the system is in the
asymmetric bistable state; ifD8.b, whensst50 the system
is in the symmetric monostable state, while whensstÞ0 the
system is in the asymmetric monostable state or the as
metric bistable state. It is clear that whenD8,b the transi-
tion is the SBMF one, while whenD8.b the transition is the
SBMF or NSBMF one. Now the SBMF transition is
second-order phase transition; the NSBMF transition is n
phase transition.

In Fig. 4, we plot the SBMF transition lines~dashed! and
the NSBMF transition lines~solid! ~here we setb53). The
c-

he

-

a

figure shows that the system has four stationary states w
are, respectively, the symmetric monostable state~region I!,
the asymmetric monostable state~the region II!, the symmet-
ric bistable state~region III!, and the asymmetric bistabl
state~region IV!. In Fig. 4, lines 1, 2, and 3, respectively, a
determined byF8(sst50)51 @see Sec. II; now Eq.~5! is still
applicable#, F8(sst5usst

(0)u)51 ~see Sec. II; now usst
(0)u

52AD82b/e for b53), and D853. The positive mean
field m5usstu ~the order parameter! is represented in Fig. 5

FIG. 4. The SBMF transition line~dashed! and the NSBMF
transition line~solid! in the e versusD8 plane for the model~6!.
b53 andD51. Lines 1, 2, and 3, respectively, are determined
F8(sst50)51 @now Eq. ~5! is still applicable#, F8(sst5usst

(0)u)51
~now usst

(0)u52AD82b/e for b53), andD853.



m
lo

g
ta
de
w

ed
th
e

es
qui-
on
d

r to

ber
he
ge.
e
ean
the
m.

nite
in
a

tate
the
tate

ys-

l,
hus
ble

PRE 58 2841NONEQUILIBRIUM TRANSITIONS FOR A STOCHASTIC . . .
~dashed line! for a function ofe @from Eq. ~5!# whenD51
andD855. In order to obtain the value of the order para
eter when the NSBMF transition happens, in Fig. 5, we p
the solid line determined by eusstu5em52AD82b
52A52352A2, which is the critical condition separatin
the asymmetric monostable state and the asymmetric bis
state. From this figure, we can obtain the value of the or
parameterm81.18 when the NSBMF transition occurs. No
the NSBMF transition is between the state with 0,m
<1.18 and the state withm.1.18. If b,0, the transition is
similar to that in the case ofb.0 whenD8.b.

IV. CONCLUSION AND DISCUSSION

In conclusion, we have reported two globally coupl
models driven by noises. These models involve both
SBMF and NSBMF transitions under some circumstanc

FIG. 5. The positive stationary mean field~dashed line! as a
function ofe for model~6!. b53, D855, andD51. The solid line
is determined bym5(2AD82b)/e for D855 andb53.
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The former transition~SBMF! is second order, and possess
features similar to those observed at the second-order e
librium phase transitions: divergence of the correlati
length and of the susceptibility, critical slowing down, an
scaling behavior. The latter transition~NSBMF! is not a
phase transition, and does not display features simila
those observed at the equilibrium phase transitions.

The system considered here consists of an infinite num
of globally coupled oscillators driven by noises. When t
oscillators are finite, the features of the system will chan
For example, in Ref.@9#, when the oscillators are finite, th
system has a transition between the state with zero m
field and the state with nonzero mean field, while when
oscillators are infinite no transition happens in the syste
Thus in our paper the case when the oscillators are fi
remains to be studied. In addition, what we have studied
the paper is globally coupled. As for the local coupling,
detailed theory is under study.

APPENDIX

In the case ofb,0 for model~1!, if sstÞ0 the system has
two stationary states, i.e., the asymmetric monostable s
and the asymmetric bistable state. Below, we try to find
critical condition separating the asymmetric monostable s
and the asymmetric bistable state.

Let (]/]x)U0(x,sst)50; we have

x32esstx
22bx50.

The solutions of this equation are

x150, x25
es1Ae2s214b

2
, x35

es2Ae2s214b

2
.

By analysis we can find that whene2s214b.0, x1, x2,
andx3 are the extreme values for the potential, and the s
tem is in the asymmetric bistable state; however whene2s2

14b<0, only x150 is the extreme value for the potentia
and the system is in the asymmetric monostable state. T
the critical condition separating the asymmetric monosta
state and the asymmetric bistable state ise2sst

214b50, i.e.,
sst

(0)562/e ~here we setb521).
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