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Nonequilibrium transitions for a stochastic globally coupled model
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We report on two globally coupled models driven by noises, and study their nonequilibrium transitions. It is
shown that these models both have the symmetry-breaking transition reported by Broeck and co-workers
[Phys. Rev. Lett73, 3395(1994); Phys. Rev. E49, 541 (1994], and a non-symmetry-breaking transition
under some circumstances. The former is a second-order phase transition, and the latter is not a phase transi-
tion. [S1063-651X98)02109-9

PACS numbgs): 05.40:+j, 47.20.Ky, 47.20.Hw

[. INTRODUCTION in which the prime indicates a derivative with respeck tof
the potentialUy(x,s) =x*/4— esx’/3—bx?/2, ands satisfies
Lately there has been an increasing interest in the influs= [* _xP(x,t)dx. The functional form of the stationary so-
ence of noises on nonequilibrium transitions and bifurcationsution of the NLFPE is obtained as
for a system with finite or infinite oscillatorsl—12]. Usu-
ally, two types of coupling are considered. One is local cou- _7-1 [{_ Uo(X,Ss)
. , . , ) P(X,Sep =2 "ex
pling, when each oscillator is influenced only by its neigh- s D
bors [1-8]. The other is global coupling, when the

interaction does not depend on the distance between oscilIé’t‘fherez is_ the normalization constant, The potential that
tors [9—18]. shows up in Eq(4) depends ors,;, which has to comply

with the condition

: 4

In this paper we shall consider two models with infinite
globally coupled oscillators driven by noises, and investigate o
the nonequilibrium transitions for them. In order to explain sst=f XPg(X,Ss)dX=F(Sg). (5
clearly the transitions for our models, let us first consider the ’“’

transitions in Refs[1-12). In Refs.[1-5,7-12, the transi-  The solution of this implicit equation yields the dependence
tions are second order, while in Rg8] the transition is first  of 5 with the system parameters. Obviously the trivial solu-
order. However, these transitions are accompanied with go's_—0 always exists. With the appearance of multiple

breaking of symmetry, and are between the state with thgg|ytions, we can find, 0. Below, we shall investigate the
mean fields=0 and the state with the mean fiede-0. For  yransitions for mode(1) according to Egs(4) and (5).

convenience, we call the phase transitions in Réfs10,13
symmetry-breaking mean-fielBMF) transitions. A. Case ofb>0

It can easily be verified that the functiofr(sy)
= [ _xPg(X,ss)dx is a smooth, monotonic, and odd func-
We consider a model whose Langevin equations of osciltion. When @/dsg)F (ss) <1, the functionF =F(sg) crosses
lators are(in dimensionless form the functionF=sg at sq=0 (stablg; when (9/dss)F(Ss)
>1, the functionF=F(sg) crosses the functiofr =sg at
X = _Xi3+ €5xi2+ bx+&((t) (i=123...), 1 ss= 0 (unstabl¢ andsg= tsgt (stable,sgt> 0). Thus the con-
dition that the system transits from the statg=0 to the
where{&;(t)} are Gaussian white noises with zero mean andstate sq#0, or vice versa, is 4/(7559F(Ssr)|sst=o:1, ie.,
correlation function(&(t)§;(t"))=2D&;d(t—t'), e is @ F’(s4=0)=1. Now the system has two stationary states,
positive coupling constant, and the mean fielsl \which are respectively the symmetric bistable statg=(0)

=limy_...(1/N)S{'x;, which has appeared in previous work and the asymmetric bistable sta#0). It is clear that the
[16,17. Because oN— <, all the oscillators have an iden- transition happening here is the SBMF one.

Il. ADDITIVE NOISE MODEL

tical evolution given by the nonlinear stochastic equation The phase transition line determined By(sy=0)=1 is
) plotted in Fig. 1a). Here we seb=1. The region below the
x=—x3+ esX*+ bx+ &(t), (2)  curve corresponds to the asymmetric bistable state, and that

_ _ above the curve to the symmetric bistable state. At the phase
wheres(t) =(x(t)), which represents the time-dependent or-transition line there is a bifurcation of the probability den-
der parameter. The corresponding nonlinear Fokker-Planckity. The nonzero value &, is represented in Fig.(th) from

equation(NLFPE) is [18,19 Eq. (5) (the order parameter of the phase transitiommis
, 5 =|s¢{). The figure shows thata) the transition is second
P (X, 1) =,Uo(X,8)P(x,1) + D3 P(x,1), (3 order, since the order parameter changes continuously; and
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FIG. 1. The SBMF transition line in the vs D plane, and the
stationary mean-field value as a function®fin the case ob=1
for model (1). (a) is the phase transition diagram, aftg is the
stationary mean-field diagram.

(2) the part ofsge>0 and that ofs4<0 are basically sym-
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FIG. 2. The SBMF transition linddashed and the NSBMF
transition line(solid) in the e vs D plane in the case di=—1 for
model (1).

It is clear that there are nonequilibrium transitions between
the symmetric monostable state and the asymmetric
monostable state, and between the asymmetric monostable
state and the asymmetric bistable state. The former is the
SBMF transition(second order The latter is a transition
without breaking of symmetry. For convenience, we call the
latter transition the non-symmetry-breaking mean-field tran-
sition (NSBMF transition. The NSBMF transition here is
not a phase transition, and does not possess features similar
to those observed at the equilibrium phase transitions. Using
a similar method as in the caselof 0, we can easily verify

that the conditions for the SBMF and NSBMF transitions to
appear are {/dss)F(Ss)ls ~o=1 and @/dss)F(ss)ls s,

=1, respectively. If there is a transition between the sym-
metric monostable state and the asymmetric bistable state, it

metric with respect to theD-coordinate axis. The point s first order(since the order parameter changes discontinu-

s=0 at the curve which cannot be calculated from Ex).
has been marked by a little circle.

B. Case ofb<0

In this case the system has three stationary states for the

6 s

potential. The first is the symmetric monostable statg (
=0), the second is the asymmetric monostable staie (
#0), and the third is the asymmetric bistable statg#0).
When sy#0, there is a critical condition separating the
asymmetric monostable state and the asymmetric bistable
state. It is sq=s0=+(2\/—b)/e=*2/e=*s, (see the
Appendix; here we seb=—1 and sy=2/e). For conve-
nience, we only consider the casesgf>0 below.

It can be verified that for a given value @f when the
system is in the symmetric monostable state, the fundtion
=F(sg) crosses the functiof =s only at s=0 (stable;
and when the system is in the asymmetric monostable state
the functionF=F(s) crosses the functiof =s; at s4—=0
(unstablg and sg=m, (0<my<sy, stablg; and when the
system is in the asymmetric bistable state the funckon
=F(sg) crosses the functioRf =s; at s;;=0 (unstable, s
=5y (sg=2/e, unstablg, andsg=m; (Sp<m;<, stablg.

£

FIG. 3. The positive stationary mean figld (dashed lingas a
function of e for model (1). b=—1 andD=5. The solid line is
determined bym=2/e.
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ously). However, by the following study we can find that this m=0.66 when the NSBMF transition occurs. Now the

first-order transition does not exist. NSBMF transition is between the stafthe asymmetric
The SBMF and NSBMF transition lines are plotted in Fig. monostable stajevith 0<m=0.66 and the statéhe asym-

2. The dashed line is the SBMF and the solid line is themetric bistable stajewith m>0.66.

NSBMF. In Fig. 2, region | corresponds to the symmetric

monostable state, region Il to the asymmetric monostable . MULTIPLICATIVE NOISE MODEL

state, and region Il to the asymmetric bistable state. From ) o .

Fig. 2 we can find that there is not a transition between the We now consider the case when multiplicative noises ex-

symmetric monostable state and the asymmetric bistablt: Now the stochastic differential equations of oscillators

state unless the noise strength tends to infinity. From(&q. are(in dimensionless forim

we plot the positive mean fielth=|s,| (dashed line; it is the _

order parameters a function of the coupling constanfor Xj= —xi3+ esx1-2+ bxi+x7(t)+&(t) (i=1,23...),

D=5 in Fig. 3. In order to obtain the value of the order (6)

parameter when the NSBMF transition occurs, in Fig. 3 we

plot the solid line determined by} sq| = em=2, which is the ~ where{7;(t)} are Gaussian white noises with zero mean,

critical condition separating the asymmetric monostable statand the correlation functions 7;(t) 7;(t"))=2D" &;; &(t

and the asymmetric bistable stdtee the Appendjx From  —t') and(7;(t)¢;(t))=0. {£(t)} are the same as those in

the figure we can find that the solid line crosses the dasheHq. (1). The stationary solution of the NLFPE for E@®) is

line at m=0.66. Thus the value of the order parameter is[18,19

b—D'+D/D’

X212— eSeX— >

Pst(x,sst)=Z’_lexp{— IN(Xx?>+D/D") + eSg D/D’tan‘l(x\/D’/D)}/D’], (7)

where we drop the subscriptfor simplicity since whenN figure shows that the system has four stationary states which
—oo all the oscillators have an identical evolution, afidis  are, respectively, the symmetric monostable sfeggion ),
the normalization constant. In this case we define an effeche asymmetric monostable stédtee region [), the symmet-

tive potentialU gx(X,Ss), Which is written as ric bistable stateregion Ill), and the asymmetric bistable
state(region V). In Fig. 4, lines 1, 2, and 3, respectively, are

Ugp(X,Ssp) = — D' INPg(X,Sgy) . (8)  determined byF'(sq=0)=1 [see Sec. II; now Eq5) is still

applicabld, F'(s¢=|s))=1 (see Sec. II; now|s{|

The effective potentiall :(X,S) for Eq. (6) is different —2D’'—ble for b=3), andD’'=3. The o

: ; " : = - =3), =3. positive mean
from the potentially(x,Ss) in the additive noise case. But . _ . P
the equations for their extrema are basically the same. ThftlaeId M=|s| (the order parametkis represented in Fig. 5

equation of extrema for Ed8) is

5r
x3— esgx®—(b—D")x=0 9 45 |
[the equation of extrema foy(X,Ss) is X3— esex®—bx 4 !
=0]. as | 1
Obviously the trivial solutionsq=0 always existgfor T m-g -
s= 0, P(X,ss) is symmetrid. With the appearance of mul- 3r il
tiple solutions, we can findsy#0 [the symmetry of w 25EF o

Ps(X,ss) is broker. In the following we first consider the
case wherb>0. 2 )
From Eq.(8) and its critical condition, one can find that if 15 E 1
D’ <b, whensy,=0 the system is in the symmetric bistable E
state for the potential, while whesy# 0 the system is in the

asymmetric bistable state; @' >b, whensy=0 the system 05|/ v
is in the symmetric monostable state, while wiegg: 0 the 0 7 L L
system is in the asymmetric monostable state or the asym 0 3 6 9 12 15

metric bistable state. It is clear that whBri<b the transi-

tion is the SBMF one, while whe’ > b the transition is the

SBMF or NSBMF one. Now the SBMF transition is a FIG. 4. The SBMF transition linddashedl and the NSBMF

second-order phase transition; the NSBMF transition is not &ansition line(solid) in the e versusD’ plane for the mode(6).

phase transition. b=3 andD=1. Lines 1, 2, and 3, respectively, are determined by
In Fig. 4, we plot the SBMF transition lingslashediand ~ F’(sq=0)=1 [now Eq. (5) is still applicabld, F’(sq=|s{|)=1

the NSBMF transition linegsolid) (here we seb=3). The  (now|s{?|=2D'—b/e for b=3), andD'=3.

D’
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The former transitioiSBMF) is second order, and possesses
features similar to those observed at the second-order equi-
librium phase transitions: divergence of the correlation
length and of the susceptibility, critical slowing down, and
scaling behavior. The latter transitioctNSBMF) is not a
phase transition, and does not display features similar to
those observed at the equilibrium phase transitions.

The system considered here consists of an infinite number
of globally coupled oscillators driven by noises. When the
oscillators are finite, the features of the system will change.
For example, in Refl9], when the oscillators are finite, the
system has a transition between the state with zero mean
field and the state with nonzero mean field, while when the
oscillators are infinite no transition happens in the system.
Thus in our paper the case when the oscillators are finite
remains to be studied. In addition, what we have studied in
0 1 2 3 4 5 the paper is globally coupled. As for the local coupling, a

€ detailed theory is under study.
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APPENDIX
FIG. 5. The positive stationary mean fie{dashed ling as a _
function of e for model(6). b=3,D’=5, andD=1. The solid line In the case ob<<0 for model(1), if sq# 0 the system has

is determined byn=(2yD'—b)/e for D' =5 andb=3. two stationary states, i.e., the asymmetric monostable state
and the asymmetric bistable state. Below, we try to find the

(dashed lingfor a function ofe [from Eq.(5)] whenD=1 critical condition separating the asymmetric monostable state

andD’=5. In order to obtain the value of the order param-and the asymmetric bistable state.

eter when the NSBMF transition happens, in Fig. 5, we plot Let (9/dx)Uq(x,ss) =0; we have

the solid line determined bye|lsy=em=2\D’'—b

=2,/6—3=2/2, which is the critical condition separating

the asymmetric monostable state and the asymmetric bistabfehe solutions of this equation are

state. From this figure, we can obtain the value of the order

x3— esgx®>—bx=0.

parametem=1.18 when the NSBMF transition occurs. Now es+\e?s?+4b es— \J€?s2+ 4b
the NSBMF transition is between the state with< X1=0, Xo=——F% ", Xe= 5
=1.18 and the state witn>1.18. If b<0Q, the transition is

similar to that in the case df>0 whenD'>b. By analysis we can find that whesfs?+4b>0, x;, X5,

andx; are the extreme values for the potential, and the sys-
tem is in the asymmetric bistable state; however whst
+4b=<0, only x;=0 is the extreme value for the potential,
IV. CONCLUSION AND DISCUSSION and the system is in the asymmetric monostable state. Thus
In conclusion, we have reported two globally coupledthe critical condition separating the asymmetric monostable
models driven by noises. These models involve both thstate and the asymmetric bistable state’s;+4b=0, i.e.,
SBMF and NSBMF transitions under some circumstancess®)= + 2/e (here we seb=—1).
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